We are pleased to welcome you to this event today

Osney Power Station is a Local Heritage Asset for its architectural interest, with clear links to Oxford’s industrial past. Our aspiration is to bring the building back into active use through its conversion to an executive education centre, just a short walk from Oxford Station.

Earlier this year we held public consultations and invited the local community to view the proposed designs. The feedback from these sessions mainly centred on the:

• Height and scale of the proposed additions to the existing building
• Appearance and materials to be used
• Relationship with neighbouring properties
• Use of the building
• Construction

We have listened to this feedback alongside independent and impartial advice by a panel of built environment experts, and made a number of changes to the proposed scheme. We are inviting you to view the proposals and talk with members of the University and the project team, who are available to answer any queries you might have.

Your views

We welcome further feedback on these revised proposals. Please submit any comments to us either in hard copy or by email to: public.consultation@admin.ox.ac.uk by 25 June 2018. The information can be found online at: www.admin.ox.ac.uk/estates/news

Thank you for attending.
The building
Design response

Responding to heritage

Our approach to heritage is to acknowledge and enhance the building’s character: to reuse and repair the best of the existing brick elevations and retain as much of the internal structure as is practical.

Where new construction is proposed, external materials have been selected to complement the existing façades.

The large industrial volumes of the power station building collectively create a distinctive roofline silhouette which we intend to retain and enhance from as many vantage points as possible. Within the building we propose to retain the crane in the main turbine hall, as well as the slender steel trusses that support the roof.

Public realm, landscape and riverside setting

The public realm component of the project is centred on Russell Street and Arthur Street. It will greatly improve the setting of the Power Station and benefit the residents.

The design team’s focus on Russell Street is to sensitively integrate diverse activities including, arrival/drop off, deliveries, and recreation. As a result, the design will better connect the neighbourhood with the river frontage.

On Arthur Street, the design proposal facilitates a new public space which significantly improves the existing built environment.

The incorporation of green roofs on various sections of the building allow us to slow the discharge of rainwater into the river instead of further burdening the existing drains. These roofs also have the benefit of encouraging biodiversity.

Responding to our neighbours

Given the predominantly residential nature of the area, there are a number of issues which have now been addressed in the proposed design:

• Reduced scale and massing of the new build areas.
• Reduced light emitting from the building during the evening.
• Creation of an attractive proposal for the Power Station and the residents.
• Reduced traffic movement within the residential area.
• Apart from two disabled parking spaces, a development which is free from car parking.
Plan development

The main entrance to the building is on Russell Street which leads into a reception/convening area. The rest of the layout is as follows:

- Ground floor: Reception, dining, teaching, leisure facilities and some plant rooms on the ground floor
- First floor: Break-out, teaching, courtyard and some bedrooms on the first floor
- Floors 2-4: Bedrooms on the second, third and fourth floors

Since the previous consultation, some of the plant rooms are now concealed in the roof spaces which has allowed the reduction in massing, and reduces the requirement for additional new build areas. The new building along Arthur Street is set back to provide better public space and an improved relationship with neighbours on the south end of the street.
Previous consultation

Existing building

Proposed at previous consultation

Existing building

Proposed at previous consultation

Existing building

Proposed at previous consultation
The design of the new building is sympathetic to the Power Station architecture with the base of the building in brick and the upper part in perforated profiled zinc cladding. This cladding subtly combines the industrial aesthetic with a new identity for the refurbished building. It provides interest in the difference between the night and day views, shades the rooms behind and prevents overlooking.
The brick base of the building reflects the residential scale of the surrounding architecture with the refurbished metal sheds behind. The windows on the south elevation are angled towards the river view and to provide shading from the strong south sunlight.
Design development

Arthur Street

The building is set back from the street with a new landscaped area. The vehicle entrance at the south end of Arthur Street has been removed which will reduce traffic in this area.

The building will be brick on this side, responding to the terraced houses and the existing Power Station elevation.

Emerging design proposal for Arthur Street looking north
Public realm & landscape

1. Entrance plaza & steps with DDA parking
2. Shared pedestrian access and service zone
3. Public riverside park/seating
4. Public garden/seating Area
5. Riverside terrace
6. Roof terrace
7. Green roof
8. Courtyard

Main entrance
Entrance plaza
Riverside park/seating
Wildlife roof gardens
Interior concept

View from guest room into courtyard and break out area

Typical guest room and study area

The central convening space with the retained crane directly above the staircase
Transport and access

Travelling to and from the Site

Travelling to and from the site on a daily basis will be by foot or on bicycle, as is normal practice within Oxford. The site has good access to bus and rail services within a 400m walk at Oxford Railway Station and Frideswide Square. Any motorists will need to use either the Park & Ride or nearby public car parks.

The programmes are intensive and closely timetabled, including the evenings, and it is expected that the participants will stay on site for much of their time in Oxford where they will have all their requirements met.

Luggage will be dropped and collected at the Business School for transfer to the Power Station by electric vehicle. Given a walking distance of just three minutes from the station, use of taxis is not likely to be significant and will be discouraged.

Cycling and car parking

Cycle parking will be provided at the University standard of 1 space per 2.8 staff plus visitor parking; a total of approximately 20 cycles. Few participants are likely to cycle as most will travel from outside Oxford. The proposed development will not affect the level of existing residents’ parking.

Apart from two disabled parking spaces on Russell Street located opposite to the main building entrance, no additional parking spaces are provided.

Servicing

Hours of collection, and use of refuse bins and recycling will be during normal working hours.

Food and laundry deliveries are likely to be daily, but will be made centrally to the main Business School building and then transferred to the Old Power Station by electric vehicle.
Sustainability

Energy efficiency
The design is being developed using the Passivhaus methodology to optimise its performance and comfort. Low U-values, reduced infiltration and new glazing throughout to reduce energy consumption.

Drainage
Green roofs will slow down the storm water surge, and rainwater will be discharged into the river to relieve pressure on the existing drains.

Façade
Retention and reuse of existing façades and structural elements to reduce new build construction.

Natural ventilation
Opening windows to all guest rooms and classrooms.

Photovoltaic panels
Solar PV array proposed on south facing roofs to generate on-site renewable electricity.

Solar control
Shading to the courtyard to reduce overheating in library.

Biodiversity
Integration of green roofs and bird & bat boxes.

Plant
Mechanical ventilation plant shall include high efficiency heat recovery to minimise heating requirements.

CHP
Combined Heat and Power (CHP) system to generate heating and electricity. High efficiency condensing boilers provided to meet peak heating demands.

Drainage
Green roofs will slow down the storm water surge, and rainwater will be discharged into the river to relieve pressure on the existing drains.

Façade
Retention and reuse of existing façades and structural elements to reduce new build construction.

Natural ventilation
Opening windows to all guest rooms and classrooms.

Photovoltaic panels
Solar PV array proposed on south facing roofs to generate on-site renewable electricity.

Solar control
Shading to the courtyard to reduce overheating in library.

Biodiversity
Integration of green roofs and bird & bat boxes.

Plant
Mechanical ventilation plant shall include high efficiency heat recovery to minimise heating requirements.

CHP
Combined Heat and Power (CHP) system to generate heating and electricity. High efficiency condensing boilers provided to meet peak heating demands.

Lighting
Energy efficient LED luminaires throughout the building together with intelligent lighting controls minimising energy consumption. Lighting which reduces in intensity in the evenings will be provided.

Brickwork
Protective paint coating to internal brickwork. Porous voids sealed to reduce infiltration.

Flooding Risk
The project is designed to mitigate against flood risk and have no additional impact on neighbouring properties.

Facade
Retention and reuse of existing façades and structural elements to reduce new build construction.
Materials

1. Pre-weathered zinc perforated profile. Colour: blue/grey
2. ‘Hit and miss’ brickwork to corridors
3. New double glazed aluminium windows to match existing. Colour: slate grey
4. Restored brickwork
5. New brickwork
6. New standing seam roof finish
7. Stainless steel cladding
8. Curtain wall with anodised aluminium framework Colour: slate grey

OSNEY POWER STATION
Construction

The University is committed to undertaking the enabling and main works with the minimum disruption possible to the residential area surrounding the Osney Power Station.

• The Contractor will be part of the Considerate Constructors Scheme ensuring the five codes of practice are being followed:
 - Appearance and management of site
 - Respect for the community
 - Consideration of the impact of activity on neighbours and public
 - Attaining the highest levels of safety performance
 - Value their workforce

• No works, deliveries or waste removal will be undertaken during the early mornings, evenings or the weekend.

• There will be no parking along any of the neighbouring residential streets.

• The site will be kept clear, tidy and organised with appropriate hoarding used to conceal the site.

• The neighbouring roads will be monitored and cleaned during the works.

• Noise and vibration will be minimised through best practice procedures when undertaking the works.

• Local residents will be able to discuss any issues or problems through regular meetings with the contractor.

• The site will be kept secure at all times.

• Off-site delivery and transfer by smaller vehicles will be maximised.

• The use of barges and the river will be reviewed as part of the works.

• The use of Arthur Street for access will be minimised other than for turning.

An example of a site where the scaffolding was wrapped to minimise the visual and acoustic impact of construction

OSNEY POWER STATION
Indicative timeline

2018

- **June**
 - 3rd Public Consultation
 - Oxford Design Review Panel (ODRP) review

- **End of Summer 2018**
 - Full Planning Application Submission

- **Autumn 2018**
 - Oxford University Museum Decant Complete

- **Winter 2018**
 - Target Date Planning Decision from OCC Expected
 - Internal Enabling Works Commence

2019

- **Spring 2019**
 - Target date for commencement of main works

2021

- **Summer 2021**
 - Target date for completion of main works